階乗素数 (1~10000)

n! + 1 か n! - 1 かどちらかの形をしている素数.
2
3
5
7
23
719
5039
階乗数 (n! + 1 or n! - 1)
0
= 1! - 1
 
= 1! + 1
prime number
1
= 2! - 1
 
= 2! + 1
prime number
= 3! - 1
prime number
= 3! + 1
prime number
= 4! - 1
prime number
25
= 4! + 1
= 52
119
= 5! - 1
= 7 * 17
121
= 5! + 1
= 112
719
= 6! - 1
prime number
721
= 6! + 1
= 7 * 103
5039
= 7! - 1
prime number
5041
= 7! + 1
= 712
40319
= 8! - 1
= 23 * 1753
40321
= 8! + 1
= 61 * 661
362879
= 9! - 1
= 112 * 2999
362881
= 9! + 1
= 19 * 71 * 269
3628799
= 10! - 1
= 29 * 125131
3628801
= 10! + 1
= 11 * 329891
39916799
= 11! - 1
= 13 * 17 * 23 * 7853
39916801
= 11! + 1
prime number
479001599
= 12! - 1
prime number
479001601
= 12! + 1
= 132 * 2834329
6227020799
= 13! - 1
= 1733 * 3593203
6227020801
= 13! + 1
= 83 * 75024347
87178291199
= 14! - 1
prime number
87178291201
= 14! + 1
= 23 * 3790360487
1307674367999
= 15! - 1
= 17 * 312 * 53 * 1510259
1307674368001
= 15! + 1
= 59 * 479 * 46271341